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Some recent results on one-dimensional spin-glass models with polynomially 
decreasing interactions are described. 
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In this contribution we describe some recent results on the absence of 
phase transitions in one-dimensional long-range spin-glasses. The systems 
we consider have the following Hamiltonian: 

H = ~ l i - j l - ~  J(i, j)  s,s/ 
i,j 

where the J(i, j) are i.i.d., which satisfy 

E exp tJ(i, j)  = exp[t2EJ(i, j)2 + O(t3)] 

(1) 

(2) 

for small t, that is, they have zero average and a convergent cumulant 
expansion. The si can be either Ising or vector spins and we consider the 
case c~> 1 in one dimension. We prove some results that support  the 
general idea that a random potential that decays like [ i - J l -  ~ behaves in 
some sense like a nonrandom, effective potential that decays like [ i - j l - ~ ,  
that is, the potential gets effectively squared. For  other work supporting 
this idea see Refs. 3-12. We remind the reader that for nonrandom poten- 
tials there is no transition (in the strong sense of analyticity) for c~ > 2, (22'231 

while there is spontaneous magnetization at low temperatures in the 
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ferromagnetic case if 1 < c~ ~< 2. (24,25) However, because of the occurrence of 
Griffiths singularities, (26) analyticity is not to be expected in our models. 

We have obtained the following results, almost surely with respect to 
the J(i, j). 

The Gibbs state is pure and does not depend on (fixed) boundary con- 
ditions (for this "weak uniqueness" see Refs. 1, 3, and 4), and 

[(SoSj)[ ~<C({J})I J[ a (3) 

for any ~i < c~- 1 in the case of Ising spins and a < ~ -  1/2 for n-vector 
spins. The random constant C({J})  is almost surely finite and does not 
depend on the distance j. 

The conjectured best value for a is a = ~. This has been proven to hold 
at high T in Ref. 4 for general dimension d and e > �89 

We sketch here the main ideas of the proofs; for full details and some 
extensions see Refs. 1 and 2. 

The first ingredient is to apply Fubini's theorem to modified thermal 
expectations. This often makes it possible to replace terms [i-j[ ~ after 
averaging over the {J} by terms li-j1-2~. 

Assume that we can split the Hamiltonian (1) and write it as 

where 

H = H 0 +  V (4a) 

V({J}, {s}) = ~ '  i i -  Jl -= J(i, j)  sisj (4b) 
i , j  

We do not specify here which terms are taken in the primed sum. Different 
choices for V are made at different steps in the proof. We only mention the 
fact that in general V is chosen such that for all spin configurations {s} 

~jexp V~expI~ '  2awJ(i'j)2] < ~176 (51 

At some stages we consider V's for which the above expression is close to 
unity (that is, V is small with high probability). 

Let us define the "good" set 

and the "bad" set 

a,.= {{J}, {,}11 v({J}, {s}j ,<o) 

Be= {{J}, {s} l lV({J}, {s}l > c} 

The constant c will be chosen large compared to [-P~(V2)] 1/2. 

(6a) 

(6b) 
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In the case where c is nevertheless small, we can write on the "good" 
set G<. for any positive observable f 

( . ( f  exp V)H0"] ( f  exp V ) H  o 
I : ( f ) H = E \  ( e x p V ) .  o ] = 1 - ( 1  (7) + (exp V -  1 )Ho] 

We can develop (7) in a Taylor expansion in V and then apply Fubini's 
theorem to interchange the average over the J(i, j) ,  which occur in V with 
the modified thermal expectation (...)H0. Since 

~ ( V ) H o =  (~v),_,o = o (8) 

the leading term containing V is of order EV 2 ~-~'i , j  l i - j l - 2 ~ .  
In the case where c is large, we use a different argument to apply on 

the "good" set. 
For the "bad" set Be, we will use condition (2). Under this condition 

the exponential Chebyshev (or Bernstein) inequality for J(i, j )  holds t5'13 16t: 

Prob(LJ(i, J)l > 2c) ~< 2 exp[ --c2/t-J(i, j)2] (9) 

We again use modified thermal expectations and obtain 

rF(Zs,)H= I-(XB, exp V ) H o / ( e x  p g ) H  o 

~< ~(ZB, exp V)H0 e x p ( -  (V)H0) 

~< (E(ZB,. exp V)2o)I/2(E exp - 2 ( V ) H 0 )  1/2 

~< (l_()e<.)H0(exp 2V)Ho)I/2(E exp --2(V)H0) 1/2 

2 2 1/4 I / 2 (l-(zBc)20)l/4(E(exp V)H0) (~ exp --2< V)H0) 

(IF(xB,)H0)I/4(E(exp 4V)Ho)l/4(I - exp --2(V)H0) l/2 (10) 

The first term on the right-hand side of this inequality can be made 
small because of (9) and Fubini's theorem, and the other terms remain 
finite due to a condition like (5). 

In deriving (10), we just used Jensen's inequality and the Cauchy- 
Schwarz inequality. For a different derivation of this result, see Ref. 1. Note 
that (10) is a Bernstein-like inequality for a quantity inside the thermal 
average. 

The second ingredient in our proofs is an argument for the deter- 
ministic effective Hamiltonian. 

In Ref. 2 we used the McBryan-Spencer inequality (16 2~) 

I (SoSj)l ~< exp[ - (a o - aj)] Z ( H ' ) / Z ( H )  (1 la) 
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where the primed Hamiltonian H'  is given by 

J'( i, j )  = cosh(a i - aj) J( i, j )  ( l l b )  

We choose the ai as in Messager et a/ .  (17) (see also Ref. 16): 

a l j l - a l j  I I=K/ [ j [  (12) 

and we can apply their estimates fairly straightforwardly to derive the 
inequality (3). 

The argument in Ref. 1 is somewhat more complicated for the 
spin-glass case. Here we present it for the nonrandom case, where it is 
reasonably simple. 

P r o p o s i t i o n .  Let H =  - Z i , s ~ z  l i - j l  ~sisj and ~>2 .  Then 
asymptotically 

for any 6 <c ~ - 2 .  

( S o S j ) ~ l J l  ~ (3') 

Remark.  In fact, in this case it is known (22'231 that asymptotically 
( s 0 s i ) ~  [J[-~. However, the proof of this stronger result is more com- 
plicated and we do not know yet how to apply it to the spin-glass models 
(but see Ref. 14). 

Ske t ch  o f  Proof. Consider an interval A = [ - n N ,  nN + n l, which is 
divided into 2 N +  1 blocks of size n. Both the block size and the number of 
blocks are chosen dependent on A: N =  O([A[ ~) and n = O([A[ 1 ~). 

Let us write 

H = Ho, A + V A + Houtsid e 

where Ho, A + Houtsid e contains all the terms within blocks in A, between 
nearest neighbor blocks in A, and between the end blocks and the outside 
of A. The term VA contains all the rest of the terms with at least one site in 
A. Then 

N 

]]VA[ ] = ~, Y, ]i--j] ~= O(Nn 2 ~) 
b l o c k  k = N i ~ b l o c k  k 

/ e n - d i s t a n l  b l o c k s  

=O(IA] '+(2-~)(1 ~))=O([At ~) (13) 

by choosing 7 small enough. 
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Because LI VAN is small, we can write 

(SoSj)l- I ~ (SoSj)I-Io.A +//outside -~- O( II VA[I) (14) 

For (S0Sj}H0,,+/~out~do we can apply a Markov chain or transfer matrix 
argument, which gives us exponential decay in the block distance for j up 
to 1 IAI: 

(SoS/)HO,Aq_Houtside ~ exp(-[jI/IA[ ~ ~') (15) 

Asymptotically (13) dominates (15) for A large, and, combined with 
(14), this gives us the announced upper bound (3'). 
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